Biota News


Link to publication here.

DNA diagnostics is a new reservoir characterization tool with potential to maximize reservoir production in tight rock formations. DNA extracted from rock layers provides high resolution fingerprints that define a "DNA stratigraphy" for organic intervals like the Wolfcamp. DNA sequences originate from microbes feeding on organic matter or minerals within the formation. A DNA stratigraphic profile, or type section, was assembled from a vertical pilot well's cuttings and core. The DNA signature from produced oil from offset laterals was subsequently compared against the DNA type section to provide estimated effective drainage height. Cuttings from a lateral well were compared with DNA from its produced oil to construct a production profile comparable to a traditional production log. In addition, when oil samples are collected over time, the method provides insight on interference, completion effectiveness, and SRV (Stimulated Reservoir Volume) changes with time.

An optimized development plan in unconventional reservoirs requires operators to understand parameters such as effective drainage height, hydraulic fracture half-length and individual stage contributions resulting from their completions. Wolfcamp reservoirs consist of highly laminated mudrocks interbedded with limestones that have quite different mechanical properties. These contrasting lithologies make it difficult to estimate resultant completion geometries, SRV, and well-to- well interactions. Also, using costly production logs, individual stage contributions are difficult to obtain in lower pressure reservoirs like the Wolfcamp. However, these reservoir performance parameters are required to set benchmarks and continuously uplift the EUR by taking advantage of insightful diagnostics.

Production logs, micro-seismic, chemical or radioactive tracers are all useful in understanding the subsurface, but can be expensive and can pose operational challenges. Subsurface DNA sequencing is a relatively low cost new data source that can be used to gain subsurface insights in complicated reservoirs. DNA stratigraphy can help assess critical geometric parameters resulting from stimulation by employing non-invasive sampling that enables lifetime well monitoring to track the flow of oil and provide engineers the basis to optimize completions and development plans.

An 8 well "subsurface" lab was selected for the experiment. The project included one vertical pilot hole with cuttings, and 8 horizontal wells landed in two Wolfcamp pay zones (one of the laterals was extended from the same vertical pilot). Three horizontals had been on production for 11 months before the pilot well and 6 additional laterals were drilled. The pilot well and its sidetracked lateral had cuttings extracted for DNA sequencing. DNA signatures from the pilot well and lateral well were compiled to produce vertical and lateral DNA stratigraphic profiles. The DNA stratigraphic profiles were then compared to DNA from oil produced in the 7 offset laterals. DNA profiles were also compared to standard geologic parameters using pilot well e-logs, particularly mechanical stratigraphy. Lateral wells were sampled at various times after initial production to assess changes with time. Blind tests were designed to check the method as a reasonable estimator for effective drainage height and communication.

DNA stratigraphy provides a more informed view of well spacing, completion design and well performance to help increase efficiency and asset value.